Intelligent Gain and Boundary Layer Based Sliding Mode Control for Robotic Systems with Unknown Uncertainties
نویسندگان
چکیده
This paper proposes a intelligent gain and boundary layer based sliding mode control (SMC) method for robotic systems with unknown model uncertainties. For intelligent gain and boundary layer, we employ the self recurrent wavelet neural network (SRWNN) which has the properties such as a simple structure and fast convergence. In our control structure, the SRWNNs are used for estimating the width of boundary layer, uncertainty bound, and nonlinear terms of robotic systems. The adaptation laws for all parameters of SRWNNs and reconstruction error bounds are derived from the Lyapunov stability theorem, which are used for an online control of robotic systems with unknown uncertainties. Accordingly, the proposed method can overcome the chattering phenomena in the control effort and has the robustness regardless of unknown uncertainties. Finally, simulation results for the three-link manipulator, one of the robotic systems, are included to illustrate the effectiveness of the proposed method.
منابع مشابه
Adaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملEnergy Optimization of Under-actuated Crane model for Time-Variant Load Transferring using Optimized Adaptive Combined Hierarchical Sliding Mode Controller
This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges in designing control systems, which include the unknown parameters or un-modeled dynamics in the systems. Sliding mode controller (SMC) is able to compensate the system in...
متن کاملDistributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems
This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...
متن کاملFractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کاملIncrease of Sliding Mode Controller Stability Limit
An important consideration in control issues is control of nonlinear systems. Sliding control is among those nonlinear controllers that can control the system desirably in the presence of unstructured uncertainties of carelessness in specifying parameters of the system. In sliding control, also called Variable Structure Control, the main objectives of the controller 
are achieved by introduc...
متن کامل